声明: 本站全部内容源自互联网,不进行任何盈利行为

仅做 整合 / 美化 处理

首页: https://dream-plan.cn

【TED】怎样拍摄一张黑洞的图片

 

In the movie "Interstellar," 在电影《星际穿越》中, we get an up-close look at a supermassive black hole. 我们得以近距离观察一个超级黑洞。 Set against a backdrop of bright gas, 在明亮气体构成的背景下, the black hole's massive gravitational pull 黑洞的巨大引力 bends light into a ring. 将光线弯曲成环形。 However, this isn't a real photograph, 但是,(电影中的)这一幕 并不是一张真正的照片, but a computer graphic rendering -- 而是电脑合成的效果—— an artistic interpretation of what a black hole might look like. 它只是一个对于黑洞 可能样子的艺术表现。 A hundred years ago, 一百多年前, Albert Einstein first published his theory of general relativity. 阿尔伯特·爱因斯坦 第一次发表了广义相对论学说。 In the years since then, 在之后的数年里, scientists have provided a lot of evidence in support of it. 科学家们又对此提供了许多佐证。 But one thing predicted from this theory, black holes, 但相对论中所预测的一点,黑洞, still have not been directly observed. 却始终无法被直接观察到。 Although we have some idea as to what a black hole might look like, 尽管我们大致知道一个黑洞 看起来应该是什么样, we've never actually taken a picture of one before. 却从未真正拍摄过它。 However, you might be surprised to know that that may soon change. 不过,这个现状可能很快就会改变。 We may be seeing our first picture of a black hole in the next couple years. 在接下来几年内,我们或许就能 见到第一张黑洞的图片。 Getting this first picture will come down to an international team of scientists, 这一重任会落在一个由 各国科学家组成的团队上, an Earth-sized telescope 同时需要一个 地球大小的天文望远镜, and an algorithm that puts together the final picture. 以及一个可以让我们合成出 最终图片的算法。 Although I won't be able to show you a real picture of a black hole today, 尽管今天我不能让你们 见到真正的黑洞图片, I'd like to give you a brief glimpse into the effort involved 我还是想让你们大致了解一下 in getting that first picture. 得到第一张(黑洞)图片 所需要的努力。 My name is Katie Bouman, 我叫凯蒂·伯曼, and I'm a PhD student at MIT. 是麻省理工学院的一名博士生。 I do research in a computer science lab 我在计算机科学实验室中进行 that works on making computers see through images and video. 让电脑解析图片和视频信息的研究。 But although I'm not an astronomer, 尽管我并不是个天文学家, today I'd like to show you 今天我还是想向大家展示 how I've been able to contribute to this exciting project. 我是怎样在这个项目中贡献 自己的一份力量的。 If you go out past the bright city lights tonight, 如果你远离城市的灯光, you may just be lucky enough to see a stunning view 你可能有幸看到银河系 of the Milky Way Galaxy. 那令人震撼的美景。 And if you could zoom past millions of stars, 而如果你可以穿过百万星辰, 将镜头放大到 26,000 light-years toward the heart of the spiraling Milky Way, 2.6万光年以外的银河系中心, we'd eventually reach a cluster of stars right at the center. 我们就能抵达(银河系)中央的 一群恒星。 Peering past all the galactic dust with infrared telescopes, 天文学家们已经穿过星尘,使用红外望远镜 astronomers have watched these stars for over 16 years. 观察了这些恒星整整十六年。 But it's what they don't see that is the most spectacular. 但是天文学家们所看不到的东西 才是最为壮观的。 These stars seem to orbit an invisible object. 这些恒星似乎是在围绕一个 隐形的物体旋转。 By tracking the paths of these stars, 通过观测这些星星的移动路径, astronomers have concluded 天文学家们得出结论, that the only thing small and heavy enough to cause this motion 体积足够小,而质量又大到能导致 恒星们如此运动的唯一物体 is a supermassive black hole -- 就是超级黑洞—— an object so dense that it sucks up anything that ventures too close -- 它的密度极大,高到它能吸进 周围所有东西, even light. 甚至光。 But what happens if we were to zoom in even further? 那么,如果我们继续放大下去, 会发生什么? Is it possible to see something that, by definition, is impossible to see? 是不是就可能看见一些, 理论上不可能看到的东西呢? Well, it turns out that if we were to zoom in at radio wavelengths, 事实上,如果我们以 无线电波长放大, we'd expect to see a ring of light 我们会看到一圈光线, caused by the gravitational lensing of hot plasma 是由围绕着黑洞的 zipping around the black hole. 等离子体引力透镜产生的。 In other words, 换句话说, the black hole casts a shadow on this backdrop of bright material, 这个黑洞,在背后明亮物质的衬托下, carving out a sphere of darkness. 留下一个圆形的暗影。 This bright ring reveals the black hole's event horizon, 而它周围那明亮的光环 指示了黑洞边境的位置。 where the gravitational pull becomes so great 在这里,引力作用变得无比巨大, that not even light can escape. 大到就连光线都无法逃离。 Einstein's equations predict the size and shape of this ring, 爱因斯坦用公式推测了 这个环的大小和形状, so taking a picture of it wouldn't only be really cool, 所以,给光环拍照不仅很酷, it would also help to verify that these equations hold 还能帮助我们检验这些公式在 in the extreme conditions around the black hole. 黑洞周围的极端环境下是否成立。 However, this black hole is so far away from us, 不过,这个黑洞离我们太过遥远, that from Earth, this ring appears incredibly small -- 从地球上看,它非常,非常小—— the same size to us as an orange on the surface of the moon. 大概就和月球上的一个橘子一样大。 That makes taking a picture of it extremely difficult. 这导致给它拍照变得无比艰难。 Why is that? 为什么呢? Well, it all comes down to a simple equation. 一切都源于一个简单的等式。 Due to a phenomenon called diffraction, 由于衍射现象, there are fundamental limits 我们所能看到的 to the smallest objects that we can possibly see. 最小物体是有限制的。 This governing equation says that in order to see smaller and smaller, 这个等式指出,当想要看到的 东西越来越小时, we need to make our telescope bigger and bigger. 望远镜需要变得更大。 But even with the most powerful optical telescopes here on Earth, 但即使是地球上功能最强大的 光学望远镜, we can't even get close to the resolution necessary 其分辨率甚至不足以 to image on the surface of the moon. 让我们得到月球表面的图片。 In fact, here I show one of the highest resolution images ever taken 事实上,这里是一张有史以来 从地球上拍摄的最高清的 of the moon from Earth. 月球图片。 It contains roughly 13,000 pixels, 它包含约1.3万个像素, and yet each pixel would contain over 1.5 million oranges. 而每一个像素里包含超过150万个橘子。 So how big of a telescope do we need 所以,我们需要多大的望远镜 in order to see an orange on the surface of the moon 才能看到月球表面的橘子, and, by extension, our black hole? 以及,那个黑洞呢? Well, it turns out that by crunching the numbers, 事实上,通过计算, you can easily calculate that we would need a telescope 我们可以轻易得出所需的 望远镜的大小, the size of the entire Earth. 就和整个地球一样大。 (Laughter) (笑声) If we could build this Earth-sized telescope, 而如果我们能够建造出这个 地球大小的望远镜, we could just start to make out that distinctive ring of light 就能够分辨出那指示着视界线的 indicative of the black hole's event horizon. 独特的光环。 Although this picture wouldn't contain all the detail we see 尽管在这张照片上,我们无法看到 in computer graphic renderings, 电脑合成图上的那些细节, it would allow us to safely get our first glimpse 它仍可以让我们对于 of the immediate environment around a black hole. 黑洞周围的环境有个大致的了解。 However, as you can imagine, 但是,正如你预料, building a single-dish telescope the size of the Earth is impossible. 想建造一个地球大小的射电望远镜 是不可能的。 But in the famous words of Mick Jagger, 不过,米克·贾格尔有一句名言: "You can't always get what you want, “你不可能永远心想事成, but if you try sometimes, you just might find 但如果你尝试了,说不定就 正好能找到 you get what you need." 你所需要的东西。” And by connecting telescopes from around the world, 通过将遍布全世界的望远镜 连接起来, an international collaboration called the Event Horizon Telescope “视界线望远镜”, 一个国际合作项目,诞生了。 is creating a computational telescope the size of the Earth, 这个项目通过电脑制作一个 地球大小的望远镜, capable of resolving structure 能够帮助我们找到 on the scale of a black hole's event horizon. 黑洞视界线的结构。 This network of telescopes is scheduled to take its very first picture 这个由无数小望远镜构成的网络 将会在明年拍下它的 of a black hole next year. 第一张黑洞图片。 Each telescope in the worldwide network works together. 在这个网络中,每一个望远镜 都与其他所有望远镜一同工作。 Linked through the precise timing of atomic clocks, 通过原子钟的准确时间相连, teams of researchers at each of the sites freeze light 各地的研究团队们通过收集 by collecting thousands of terabytes of data. 上万千兆字节的数据来定位光线。 This data is then processed in a lab right here in Massachusetts. 接下来,这份数据会在 麻省的实验室进行处理。 So how does this even work? 那么,这一项目到底是 怎么运作的呢? Remember if we want to see the black hole in the center of our galaxy, 大家是否记得,如果要看到 银河系中心的那个黑洞, we need to build this impossibly large Earth-sized telescope? 我们需要一个地球大小的望远镜? For just a second, let's pretend we could build 现在,先假设我们可以 a telescope the size of the Earth. 将这个望远镜建造出来。 This would be a little bit like turning the Earth 这可能有点像是把地球变成 into a giant spinning disco ball. 一个巨大的球形迪斯科灯。 Each individual mirror would collect light 每一面镜子都会收集光线, that we could then combine together to make a picture. 然后,我们就可以将这些光线 组合成图片。 However, now let's say we remove most of those mirrors 但是,现在,假设我们将 大多数镜子移走, so only a few remained. 只有几片留了下来。 We could still try to combine this information together, 我们仍可以尝试将信息合成图片, but now there are a lot of holes. 但现在,图片中有很多洞。 These remaining mirrors represent the locations where we have telescopes. 这几片留下来的镜子就代表了 地球上的几处天文望远镜。 This is an incredibly small number of measurements to make a picture from. 这对于制成一张图片来说, 还远远不够。 But although we only collect light at a few telescope locations, 不过,尽管我们只在寥寥几处 地方收集光线, as the Earth rotates, we get to see other new measurements. 每当地球旋转时,我们便可以 得到新的信息。 In other words, as the disco ball spins, those mirrors change locations 换言之,当迪斯科球旋转时, 镜子会改变位置, and we get to observe different parts of the image. 而我们就可以看到图片的各个部分。 The imaging algorithms we develop fill in the missing gaps of the disco ball 我们开发的生成图片的算法 可以将迪斯科球上的空缺部分填满, in order to reconstruct the underlying black hole image. 从而建造出隐藏的黑洞图片。 If we had telescopes located everywhere on the globe -- 如果我们能在地球上每一处 都装上望远镜, in other words, the entire disco ball -- 或者说能有整个迪斯科球, this would be trivial. 那么这个算法并不算重要。 However, we only see a few samples, and for that reason, 但现在我们只有少量的样本, there are an infinite number of possible images 所以,可能有无数张图像 that are perfectly consistent with our telescope measurements. 符合望远镜所测量到的信息。 However, not all images are created equal. 但并不是每一张图片都一样。 Some of those images look more like what we think of as images than others. 有些图片,比其他一些 看起来更像我们想象中的图片。 And so, my role in helping to take the first image of a black hole 所以我在拍摄黑洞 这一项目中的任务是, is to design algorithms that find the most reasonable image 开发一种既可以找到最合理图像, that also fits the telescope measurements. 又能使图像符合望远镜 所测量到的信息的算法。 Just as a forensic sketch artist uses limited descriptions 就像法医素描师通过有限的信息, to piece together a picture using their knowledge of face structure, 结合自己对于人脸结构的认知 画出一张画像一样, the imaging algorithms I develop use our limited telescope data 我正在开发的图片算法, 是使用望远镜提供的有限数据 to guide us to a picture that also looks like stuff in our universe. 来生成一张看起来像是 宇宙里的东西的图片。 Using these algorithms, we're able to piece together pictures 通过这些算法,我们能从散乱 而充满干扰的数据中 from this sparse, noisy data. 合成一张图片。 So here I show a sample reconstruction done using simulated data, 这里是一个用模拟数据 进行重现的例子: when we pretend to point our telescopes 我们假设将望远镜指向 to the black hole in the center of our galaxy. 银河系中心的黑洞。 Although this is just a simulation, reconstruction such as this give us hope 尽管这只是一个模拟,像这样的 重建工作给了我们 that we'll soon be able to reliably take the first image of a black hole 真正给黑洞拍摄可行照片的希望, and from it, determine the size of its ring. 之后便可以决定其光环的大小。 Although I'd love to go on about all the details of this algorithm, 虽然我很想继续描绘 这个算法的细节, luckily for you, I don't have the time. 但你们很幸运,我没有这个时间。 But I'd still like to give you a brief idea 可我仍然想大概让你们了解一下 of how we define what our universe looks like, 我们是怎样定义宇宙的样子, and how we use this to reconstruct and verify our results. 以及是怎样以此来重建 和校验我们的结果的。 Since there are an infinite number of possible images 由于有无数种可以完美解释 that perfectly explain our telescope measurements, 望远镜测量结果的图片, we have to choose between them in some way. 我们需要找到一个方式进行挑选。 We do this by ranking the images 我们会按照这些图片是 based upon how likely they are to be the black hole image, 真正黑洞图片的可能性进行排序, and then choosing the one that's most likely. 然后选出可能性最高的那一张。 So what do I mean by this exactly? 我这话到底是什么意思呢? Let's say we were trying to make a model 假设我们正在建立一个能够 that told us how likely an image were to appear on Facebook. 指出一张图出现在脸书上的 可能性的模型。 We'd probably want the model to say 我们希望这个模型能指出 it's pretty unlikely that someone would post this noise image on the left, 不太可能有人会上传最左边的图像, and pretty likely that someone would post a selfie 而像右边那样的自拍照 like this one on the right. 画出一张图片一样, The image in the middle is blurry, 中间那张图有点模糊, so even though it's more likely we'd see it on Facebook 所以它被发表的可能性 compared to the noise image, 比左边的噪点图像大, it's probably less likely we'd see it compared to the selfie. 但比右边自拍发表的可能性要小。 But when it comes to images from the black hole, 但是当模型的主角变成 黑洞的照片时, we're posed with a real conundrum: we've never seen a black hole before. 一个难题出现了:我们从未 见过真正的黑洞。 In that case, what is a likely black hole image, 在这样的情况下, 什么样的图才更像黑洞, and what should we assume about the structure of black holes? 而我们又该怎样假设黑洞的结构呢? We could try to use images from simulations we've done, 我们或许能够使用模拟试验 得出的图片, like the image of the black hole from "Interstellar," 比如《星际穿越》里的那张黑洞图。 but if we did this, it could cause some serious problems. 但这样做可能会引起 一些严重的问题。 What would happen if Einstein's theories didn't hold? 如果爱因斯坦的理论是错的怎么办? We'd still want to reconstruct an accurate picture of what was going on. 我们仍然想要得到一张 准确而真实的图片。 If we bake Einstein's equations too much into our algorithms, 而如果我们在算法中掺入太多 爱因斯坦的公式, we'll just end up seeing what we expect to see. 最终只会看到我们所希望看到的。 In other words, we want to leave the option open 换句话说,我们想保留在银河系中心 for there being a giant elephant at the center of our galaxy. 看到一头大象这样的可能性。 (Laughter) (笑声) Different types of images have very distinct features. 不同类型的照片拥有 完全不同的特征。 We can easily tell the difference between black hole simulation images 我们可以轻松分辨出 一张黑洞模拟图 and images we take every day here on Earth. 和我们日常拍的照片的差别。 We need a way to tell our algorithms what images look like 我们需要在不过度提供某类图片 特征的情况下, without imposing one type of image's features too much. 告诉我们的算法,一张正常的图片 应该是什么样。 One way we can try to get around this 做到这一点的一种方法是, is by imposing the features of different kinds of images 向算法展示拥有不同特征的图片, and seeing how the type of image we assume affects our reconstructions. 然后看看这些图片会怎样 影响重建的结果。 If all images' types produce a very similar-looking image, 如果不同类型的图片都产生出了 差不多的图像, then we can start to become more confident 那么我们便可以更有信心了, that the image assumptions we're making are not biasing this picture that much. 我们对图片的假设并没有 导致结果出现太大偏差。 This is a little bit like giving the same description 这就有点像让来自不同国家的 三个法医素描师 to three different sketch artists from all around the world. 根据同样的文字描述来作画。 If they all produce a very similar-looking face, 如果他们画出的脸都差不多, then we can start to become confident 那么我们就能比较确信, that they're not imposing their own cultural biases on the drawings. 他们各自的文化背景 并没有影响到他们的画。 One way we can try to impose different image features 将不同图片的特征赋予 (算法)的一个方法 is by using pieces of existing images. 就是使用现有的图片的碎片特征。 So we take a large collection of images, 所以,我们将大量的图像 and we break them down into their little image patches. 分解成无数小图片, We then can treat each image patch a little bit like pieces of a puzzle. 然后像拼图一样处理这些小图片。 And we use commonly seen puzzle pieces to piece together an image 我们用其中常见的拼图碎片 来组合成一张 that also fits our telescope measurements. 符合望远镜所测量数据的完整图片。 Different types of images have very distinctive sets of puzzle pieces. 不同类型的图片拥有 完全不同的拼图碎片。 So what happens when we take the same data 所以,当我们使用相同的数据和 but we use different sets of puzzle pieces to reconstruct the image? 截然不同的拼图类型来 重现图像时,会发生什么呢? Let's first start with black hole image simulation puzzle pieces. 我们先从黑洞模拟类的拼图开始。 OK, this looks reasonable. 这张图看起来还比较合理。 This looks like what we expect a black hole to look like. 它比较符合我们预料中黑洞的样子。 But did we just get it 但我们得到这个结果 because we just fed it little pieces of black hole simulation images? 是否仅仅是因为我们拿的是 黑洞模拟拼图呢? Let's try another set of puzzle pieces 我们再来试试另一组拼图, from astronomical, non-black hole objects. 这组拼图由宇宙中不是黑洞的 各种天体构成。 OK, we get a similar-looking image. 很好,我们得到了一幅相似的图片。 And then how about pieces from everyday images, 那如果我们拿日常照片的拼图 会怎么样呢, like the images you take with your own personal camera? 就像你每天拿自己的相机 拍的那种照片? Great, we see the same image. 太好了,我们看到了和之前 一样的图像。 When we get the same image from all different sets of puzzle pieces, 当我们通过不同类型的拼图 得出一样的图片时, then we can start to become more confident 我们就有充足的自信说 that the image assumptions we're making 我们对图片进行的推测, aren't biasing the final image we get too much. 并没有引起最终结果的太大偏差。 Another thing we can do is take the same set of puzzle pieces, 我们能做的另一件事是, 用同一组拼图, such as the ones derived from everyday images, 比如源自日常图片的那一种, and use them to reconstruct many different kinds of source images. 来得到不同类型的源图片。 So in our simulations, 所以,在我们的模拟试验中, we pretend a black hole looks like astronomical non-black hole objects, 我们假设黑洞看起来像一个 非黑洞天体, as well as everyday images like the elephant in the center of our galaxy. 以及在银河系中心的一头大象。 When the results of our algorithms on the bottom look very similar 当下面一排算法算出的图片 to the simulation's truth image on top, 看起来和上面一排实际图片 十分相似时, then we can start to become more confident in our algorithms. 我们就能对我们的算法 有更多信心了。 And I really want to emphasize here 在这里我想强调, that all of these pictures were created 此处所有的图片都是由 by piecing together little pieces of everyday photographs, 拼接日常照片而得出的, like you'd take with your own personal camera. 就像你自己用相机拍的照片一样。 So an image of a black hole we've never seen before 所以,一张我们从未见过的 黑洞的照片, may eventually be created by piecing together pictures we see all the time 最终却可能由我们日常 熟悉的图片构成: of people, buildings, trees, cats and dogs. 人,楼房,树,小猫,小狗…… Imaging ideas like this will make it possible for us 想象这样的想法使拍摄第一张 to take our very first pictures of a black hole, 黑洞的图片成为可能, and hopefully, verify those famous theories 同时使我们有望校验 on which scientists rely on a daily basis. 科学家们每天所依靠的著名理论。 But of course, getting imaging ideas like this working 但是,要想让如此充满想象力的 点子实际工作, would never have been possible without the amazing team of researchers 离不开这些我有幸一同工作的 that I have the privilege to work with. 出色的研究者团队。 It still amazes me 我仍然对此感到振奋: that although I began this project with no background in astrophysics, 虽然在项目开始时我没有任何 天文学背景知识, what we have achieved through this unique collaboration 我们通过这一独特合作 所达成的成就, could result in the very first images of a black hole. 可能导致世界上第一幅 黑洞照片的诞生。 But big projects like the Event Horizon Telescope 像视界线望远镜这样大项目的成功 are successful due to all the interdisciplinary expertise 是由来自不同学科的人们 用他们各自的专业知识, different people bring to the table. 一起创造的结果。 We're a melting pot of astronomers, 我们是一个由天文学家,物理学家, physicists, mathematicians and engineers. 数学家和工程学家构成的大熔炉。 This is what will make it soon possible 这就是我们能够很快达成 to achieve something once thought impossible. 一个看起来不可能达成的 成就的原因。 I'd like to encourage all of you to go out 在此我想鼓励你们所有人,走出去, and help push the boundaries of science, 推动科学的边际, even if it may at first seem as mysterious to you as a black hole. 尽管刚开始它看起来可能 和一个黑洞一样神秘。 Thank you. 谢谢大家。 (Applause) (掌声)

萌ICP备20223985号