声明: 本站全部内容源自互联网,不进行任何盈利行为

仅做 整合 / 美化 处理

首页: https://dream-plan.cn

【TED】4D打印机的诞生

 

This is me building a prototype 这是我正在做一个模型 for six hours straight. 足足花了6个小时, This is slave labor to my own project. 完全是苦力活。 This is what the DIY and maker movements really look like. 这就是所谓的自己动手做和自造者运动。 And this is an analogy for today's construction and manufacturing world 这也是今日全球建筑和制造业的缩影: with brute-force assembly techniques. 到处可见费尽蛮力的组装技术。 And this is exactly why I started studying 这也是我为什么开始研究 how to program physical materials to build themselves. 如何让物理材料根据特定程序来组装自己。 But there is another world. 但是,还有另外一个世界。 Today at the micro- and nanoscales, 如今在微观纳米级上, there's an unprecedented revolution happening. 正在发生一场空前的革命。 And this is the ability to program physical and biological materials 这就是通过编程使物理和生物材料 to change shape, change properties 改变形状、改变属性的能力, and even compute outside of silicon-based matter. 它的应用范围甚至超过了硅基物质。 There's even a software called cadnano 甚至已经有了一个叫cadnano的软件 that allows us to design three-dimensional shapes 我们可以用它来设计各种三維物体。 like nano robots or drug delivery systems 比如纳米机器人或者药物传输系统, and use DNA to self-assemble those functional structures. 以及利用DNA自我组装各种功能结构。 But if we look at the human scale, 但是,如果我们再看宏观的人类社会生活, there's massive problems that aren't being addressed 还有很多问题没有被 by those nanoscale technologies. 这些纳米级技术解决。 If we look at construction and manufacturing, 如果我们看看建筑业和制造业, there's major inefficiencies, energy consumption 有很多效率严重低下的地方,比如能源消耗 and excessive labor techniques. 和过多的人工技能需求。 In infrastructure, let's just take one example. 在基础设施方面,我们举个例子, Take piping. 比如说铺设管道。 In water pipes, we have fixed-capacity water pipes 水管,我们的水管都是固定容积, that have fixed flow rates, except for expensive pumps and valves. 固定流量的,除了昂贵的水泵和水阀以外。 We bury them in the ground. 我们把它们埋在地底下, If anything changes -- if the environment changes, 如果有任何变动 - 比如环境变化, the ground moves, or demand changes -- 地基移动或者需求改变- we have to start from scratch and take them out and replace them. 我们就得从头再来, 把它们挖出来再换新的。 So I'd like to propose that we can combine those two worlds, 所以我建议把这两个世界结合起来, that we can combine the world of the nanoscale programmable adaptive materials 把纳米级上可程序化、能自我调节的材料 and the built environment. 和生产环境结合起来。 And I don't mean automated machines. 我的意思不是自动化设备。 I don't just mean smart machines that replace humans. 我指的也不仅仅是让智能机器替代人类劳动, But I mean programmable materials that build themselves. 而是那些可以可程序化的材料实现自我组装。 And that's called self-assembly, 这就叫做自我组装, which is a process by which disordered parts build an ordered structure 一种把各个无序的零部件组成一个有序的结构的过程, through only local interaction. 这一切都只通过材料自身的相互作用来完成。 So what do we need if we want to do this at the human scale? 那么要把它应用于人类社会生活,我们又需要些什么呢? We need a few simple ingredients. 我们只需要一些简单的条件, The first ingredient is materials and geometry, 第一个就是材料和几何形状, and that needs to be tightly coupled with the energy source. 这需要和能源材料紧密结合起来。 And you can use passive energy -- 我们可以用被动式能源 - so heat, shaking, pneumatics, gravity, magnetics. 比如热力、抖动、气压、重力、磁力。 And then you need smartly designed interactions. 同时我们也需要设计得非常巧妙的交互方式。 And those interactions allow for error correction, 而且这些交互方式可以纠错, and they allow the shapes to go from one state to another state. 可以让已成型的物体改变状态。 So now I'm going to show you a number of projects that we've built, 我现在要为大家展示我们已经做好的一些项目, from one-dimensional, two-dimensional, three-dimensional 从一维、二维、三维 and even four-dimensional systems. 甚至到四维的系统。 So in one-dimensional systems -- 在一维系统里 - this is a project called the self-folding proteins. 我们有个项目叫 "自我折叠蛋白质"。 And the idea is that you take the three-dimensional structure of a protein -- 思路是我们拿一个蛋白质的三維结构模型 - in this case it's the crambin protein -- 这里我们用的是花菜蛋白 - you take the backbone -- so no cross-linking, no environmental interactions -- 我们拿出它的主链 - 没有交叉链接的地方或者与环境的相互作用 and you break that down into a series of components. - 我们把它分解成一系列的组成部分。 And then we embed elastic. 然后我们嵌入一定的弹性松紧度。 And when I throw this up into the air and catch it, 然后我把它抛向空中再接住, it has the full three-dimensional structure of the protein, all of the intricacies. 它就变成了蛋白质本身复杂的三維结构。 And this gives us a tangible model 它为我们展示了一个形象的 of the three-dimensional protein and how it folds 三維蛋白质模型,它是如何折叠的 and all of the intricacies of the geometry. 以及它的几何复杂性。 So we can study this as a physical, intuitive model. 所以我们可以利用这个实际直观的模型来研究蛋白质。 And we're also translating that into two-dimensional systems -- 同时我们也把这个想法应用到二维系统里- so flat sheets that can self-fold into three-dimensional structures. 比如使平板能够自我折叠形成三維结构。 In three dimensions, we did a project last year at TEDGlobal 对于三維系统,我们去年在TEDGlobal和Autodesk(欧特克) with Autodesk and Arthur Olson 以及Arthur Olson做了一个项目。 where we looked at autonomous parts -- 我们研究了分散独立的零件 - so individual parts not pre-connected that can come together on their own. 就是怎样让各自分散的部分自发的组合在一起。 And we built 500 of these glass beakers. 我们一共做了500个这样的烧杯。 They had different molecular structures inside 里面有不同的分子结构 and different colors that could be mixed and matched. 以及不同的可以相互混杂搭配的颜色。 And we gave them away to all the TEDsters. 我们把它们给了所有在场的TED观众。 And so these became intuitive models 这些形象的模型帮助我们 to understand how molecular self-assembly works at the human scale. 在宏观上理解分子是如何自我组装的。 This is the polio virus. 这个是脊髓灰质炎病毒。 You shake it hard and it breaks apart. 你使劲儿一摇,它就散架了。 And then you shake it randomly 然后你随便摇瓶子 and it starts to error correct and built the structure on its own. 它就开始纠错然后自己组合成本来的结构形状。 And this is demonstrating that through random energy, 这个例子说明了我们可以利用不规则的运动能量 we can build non-random shapes. 形成规则的物体形状。 We even demonstrated that we can do this at a much larger scale. 我们甚至证明了它同样适用于更加宏观的层面。 Last year at TED Long Beach, 去年在TED的 Long Beach, we built an installation that builds installations. 我们做了一个可以制造其它设备的装置。 The idea was, could we self-assemble furniture-scale objects? 想法就是我们能不能自我组装家具大小的物体呢? So we built a large rotating chamber, 所以我们做了一个大的滚动的空间, and people would come up and spin the chamber faster or slower, 然后人们过来或快或慢的滚动它 adding energy to the system 来给这个系统增加能量 and getting an intuitive understanding of how self-assembly works 从而更形象的理解了自我组装是怎么一回事, and how we could use this 以及我们怎样 as a macroscale construction or manufacturing technique for products. 在产品的宏观建设或制造技术上利用它。 So remember, I said 4D. 还记得我刚才提到了四维, So today for the first time, we're unveiling a new project, 今天我们首次向大家展示一个新项目, which is a collaboration with Stratasys, 这是和Stratasys公司一同合作的, and it's called 4D printing. 它叫做4D(四维)打印。 The idea behind 4D printing 4D(四维)打印指的是 is that you take multi-material 3D printing -- 我们利用多材料进行三維打印 - so you can deposit multiple materials -- 就是我们可以使用多种材料 - and you add a new capability, 同时我们又新加一种能力, which is transformation, 就是变形。 that right off the bed, 一但从车床上下来, the parts can transform from one shape to another shape directly on their own. 这些不同的零部件就可以直接自发的变成其他的形状, And this is like robotics without wires or motors. 就像是没有电线或者马达驱动的机器人。 So you completely print this part, 所以我们把一个部分完整的打印出来, and it can transform into something else. 它就可以自己变成其它的物体形状。 We also worked with Autodesk on a software they're developing called Project Cyborg. 我们也和Autodesk(欧特克)合作了他们正在开发的Project Cyborg软件。 And this allows us to simulate this self-assembly behavior 这个项目让我们可以模拟自我组装这种行为 and try to optimize which parts are folding when. 以及优化哪些部件应该在何时折叠变形。 But most importantly, we can use this same software 但是,最重要的是,我们可以利用同样的软件 for the design of nanoscale self-assembly systems 设计纳米级的自我组装系统 and human scale self-assembly systems. 以及人类生活中的自我组装系统。 These are parts being printed with multi-material properties. 这些是用多材料属性打印出来的零件 Here's the first demonstration. 这是第一个演示, A single strand dipped in water 把一条链子浸在水里 that completely self-folds on its own 它可以完全自我折叠成 into the letters M I T. 字母M. I. T (美国麻省理工学院)。 I'm biased. 我确实偏心。 This is another part, single strand, dipped in a bigger tank 另外一个演示,把一条链子浸在一个大缸里, that self-folds into a cube, a three-dimensional structure, on its own. 它会自我折叠变成一个三維结构的立方体, So no human interaction. 没有任何人力的影响。 And we think this is the first time 我们认为这是首次 that a program and transformation 把一个程序软件和变形 has been embedded directly into the materials themselves. 一起直接的嵌入(应用)到材料中去。 And it also might just be the manufacturing technique 或许这将是一种制造技术, that allows us to produce more adaptive infrastructure in the future. 能让我们在未来生产更多的可自我调节的基础设施设备。 So I know you're probably thinking, 我知道大家现在大概会想, okay, that's cool, but how do we use any of this stuff for the built environment? 好吧,看着挺酷的,但是我们怎么把它应用到生产环境里? So I've started a lab at MIT, 我在MIT(美国麻省理工学院)开展了一个实验室, and it's called the Self-Assembly Lab. 它叫做“自我组装实验室”。 And we're dedicated to trying to develop programmable materials 我们致力于为实际生产环境开发 for the built environment. 可程序化的材料。 And we think there's a few key sectors 我们认为有几个关键部分 that have fairly near-term applications. 它们可以在相当短期内得到应用。 One of those is in extreme environments. 其中之一就是在极限环境下。 These are scenarios where it's difficult to build, 有些情况是建造起来非常困难, our current construction techniques don't work, 我们现有的建造技术行不通的。 it's too large, it's too dangerous, it's expensive, too many parts. 它太大,太危险,太昂贵,太庞杂。 And space is a great example of that. 太空就是一个非常好的例子。 We're trying to design new scenarios for space 我们正在为太空环境设计新的 that have fully reconfigurable and self-assembly structures 可以完全重置和自我组装的结构。 that can go from highly functional systems from one to another. 它们可以自我转化成各种功能强大的系统。 Let's go back to infrastructure. 我们再回到基础设施建设。 In infrastructure, we're working with a company out of Boston called Geosyntec. 在这个领域,我们正和波士顿一家叫Geosyntec的公司合作, And we're developing a new paradigm for piping. 正在开发一种新的管道模板。 Imagine if water pipes could expand or contract 想象一下如果水管可以膨胀或者收缩 to change capacity or change flow rate, 来改变容积、改变流量、 or maybe even undulate like peristaltics to move the water themselves. 它甚至可以自己起伏蠕动来传输水。 So this isn't expensive pumps or valves. 这就不需要昂贵的水泵或者水阀了。 This is a completely programmable and adaptive pipe on its own. 这是一个完全可程序化和自我调节的管道。 So I want to remind you today 我今天想要提醒大家的是 - of the harsh realities of assembly in our world. 当今残酷的组装现实。 These are complex things built with complex parts 这些庞杂的集合体是用复杂的零件 that come together in complex ways. 以繁复的方式组装起来的。 So I would like to invite you from whatever industry you're from 所以,我真诚的邀请大家,不管你们来自哪个领域, to join us in reinventing and reimagining the world, 和我们一起重塑和重新想象这个世界, how things come together from the nanoscale to the human scale, 怎样将微观纳米世界和宏观人类生活的事物结合在一起。 so that we can go from a world like this 从而,我们可以从这样一个世界过渡到 to a world that's more like this. 一个更类似于这样的世界。 Thank you. 谢谢大家。 (Applause) (掌声)

萌ICP备20223985号